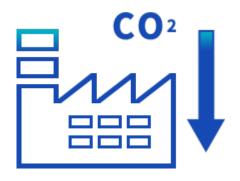

Japan's policies and actions toward hydrogen-based economy

KOYAMA, Masaomi, METI, Japan



Why hydrogen?

Energy Security

Decarbonising Sectors

Economic Impact

Policy Documentations



~A set of policies to guide our efforts toward hydrogen-based economy~

Basic Energy Plan

Hydrogen as a key contributor to:

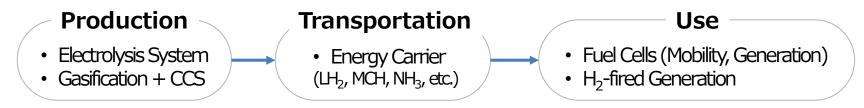
- Decarbonisation
- Energy security
- Industrial competitiveness

Basic Hydrogen Strategy (Prime Minister Abe's Initiative)

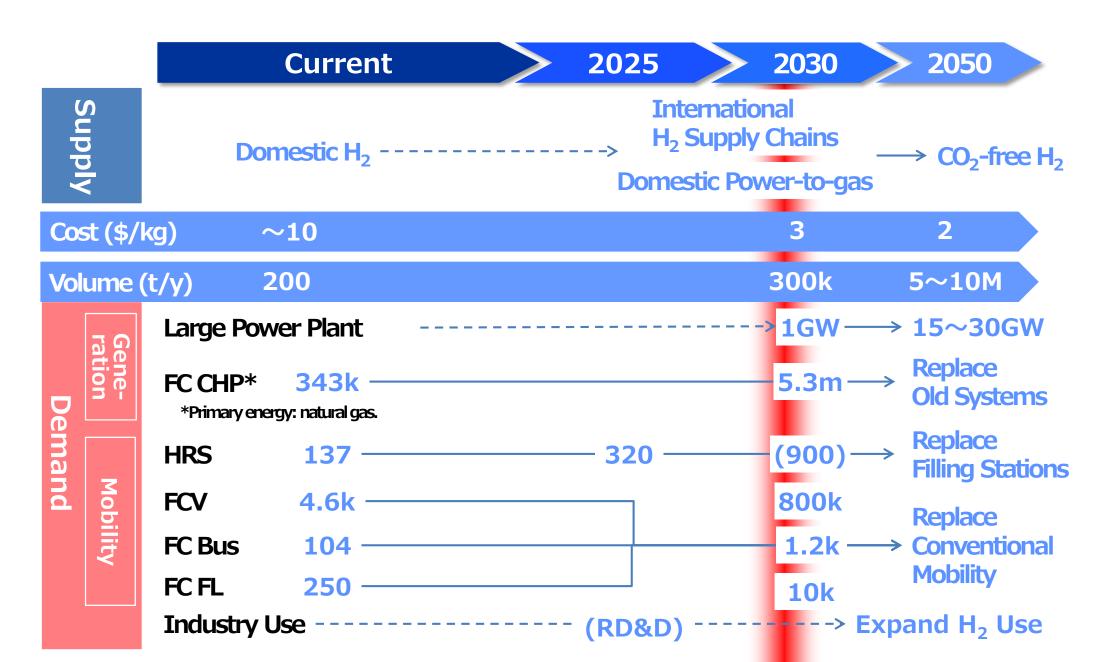
- First comprehensive national strategy
- H₂ as a future energy option toward 2050
- Detailed strategy with numerical targets
 (\$3/kg by 2030 ⇒ \$2/kg by 2050)

Strategic Roadmap for Hydrogen and Fuel Cells

Hydrogen and Fuel Cells Technology Development Strategy


Basic Hydrogen Strategy

- "Basic Hydrogen Strategy" (Prime Minister Abe's Initiative)
 - ✓ First comprehensive national strategy
 - √ H₂ as a future energy option toward 2050
 - ✓ Goals: making H_2 affordable (\$3/kg by 2030 \Rightarrow \$2/kg by 2050)


3 conditions for realising affordable hydrogen [Supply] (Supply] (Demand) (Deman

Key Technologies to be Developed

Numerical targets toward hydrogen society

The Strategic Road Map for Hydrogen and Fuel Cells

~Industry-academia-government action plan to realize Hydrogen Society~ (overall)

		Goals in the Basic Hydrogen Strategy	Set of targets to achieve	Approach to achieving target
Use	Mobility	FCV 200k b y2025 800k by 2030		Regulatory reform and developing technology
		HRS 320 by 2025 900 by 2030	 Construction and operating Construction cost ¥350m → ¥200m Operating cost ¥34m → ¥15m Costs of components for HRS Components for Accumulator ¥50m → ¥10m	 Consideration for creating nation wide network of HRS Extending hours of operation
		Bus 1,200 by 2030	HRS $\qquad \qquad \qquad$	Increasing HRS for FC bus
	Power	Commercialize by 2030	2020 ■ Efficiency of hydrogen power generation (26%→27%) **1MW scale	 Developing of high efficiency combustor etc.
	FC	Early realization of grid parity	2025 • Realization of grid parity in commercial and industrial use	Developing FC cell/stack technology
Supply	Fossil +CCS	Hydrogen Cost ¥30/Nm3 by 2030 ¥20/Nm3 in future	 Production: Production cost from brown coal gasification (¥several hundred/Nm3→ ¥12/Nm3) Storage/Transport: Scale-up of Liquefied hydrogen tank (thousands m→50,000m³) Higher efficiency of Liquefaction (13.6kWh/kg→6kWh/kg) 	 Scaling-up and improving efficiency of brown coal gasifier Scaling-up and improving thermal insulation properties
	Green H2	System cost of water electrolysis ¥50,000/kW in future	2030	 Demonstration in model regions for social deployment utilising the achievement in the demonstration of Namie, Fukushima Development of electrolyser with higher efficiency and durability

Japan Hydrogen Snapshot I

H₂ Mobility

H₂ Station Network

162 Stations

H2 station for FC bus opened

H₂ Applications

FC bus deployment

FC Truck development

Joint Venture for H₂ Infrastructure Development

R&D

4679 FCV

FC train demonstration

FC train

FC Truck

Local/regional projects

Fukushima prefecture

10M electrolyser with 20M solar PV

Creating Hydrogen Hubs

"Hydrogen Utilization Study **Group in Chubu"**

2020

Sumitomo Corporation

"Hydrogen Utilization Council in Kobe/Kansai area"

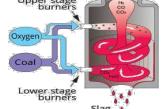
Iwatani Marubeni and 9 companies

Japan Hydrogen Snapshot II

Japan-Brunai Pilot Project

Japan-Australia Pilot Project

H_STRA



Gasification

Hydrogenation (TOL→MCH)

Liquefied H₂ Carrier

Dehvdrogenation (MCH→TOL)

Loading **Facility**

Hydrogen power generation

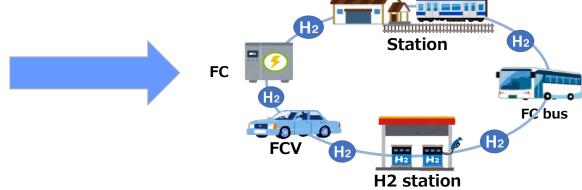
In Utah State in US, a power generation project started, with a 30% H2 blending by 2025 and 100% H2 by 2045.

Plans have also been launched in other states in the United States (NY, VA, OH) and Singapore.

Source: Mitsubishi Power

Stationary Fuel Cells at home

FC CHP for home use: More than 300,000 units installed.



Green Hydrogen Production

◆ Support the demonstration project at Fukushima Hydrogen Energy Research Field

- A 10MW electrolyser with 20MW solar PV started in Fukushima
- Intensive support for large-scale production and implementation of superior elemental technologies in equipment
- Provide an environment to evaluate the performance of the equipment
- Expand the use of the produced hydrogen in the region

Establishing International Hydrogen Supply Chain

Launching "SUISO FRONTIER" in Kobe

LH2 storage tank for marine transportation

- The World's first liquefied Hydrogen carrier ship launched in December 2019.
- The LH2 carrier ship plans to transport hydrogen to Japan in 2021~
- The development of large-scale equipment needed for the commercialisation.
- Suiso Frontier Video:
 - https://www.youtube.com/watch?v=WGPkSuIH7uA&feature=youtu.be
- Project Video:
 - https://www.youtube.com/watch?v=h8Dg9AWTDsk&feature=youtu.be

CO2-free hydrogen supply chain project in Malaysia

Sumitomo Corporation

- Consider the collaboration for the establishment of a CO2-free hydrogen supply chain using renewable energy.
- A feasibility study will start in January 2021.

Industry Alliances

~Companies have formed alliances to tap the hydrogen potential~

Japan Hydrogen Association

*195 Members as of March 2021

Hydrogen Utilization Council in Kobe/Kansai area

> YANMAR

ほくてん

| 日本郵船

OBAYASH

MIZUHO

Fidemitsu

INPEX

DENSO

住友化学

/TOCHW

新コスモス電機株式会社

🥟 沖縄電力

7 高砂熱学

JAPAN

Air Liquide

HYDROGEN

HONDA

HINO

株式会社三井E&Sマシナリ・

MITSUI E&S

▲ 三菱商事株式会社

Hydrogen Utilization Study Group

in Chubu area

Actuating change

NOMURA

→ 大林組

KIRIN

TOKUYAMA 💝

住友商事

豊田通商

は 株式会社加地テック

FUS0

KOBELCO

Hydrogen Energy Ministerial Meeting ~Promoting global cooperation~

2018

21 countries, region and organizations **300** attendees

TOKYO STATEMENT

- Harmonisation of Regulation, Codes and Standards
- Joint Research and Development
- Study and Evaluation of Hydrogen's Potential
- **Education & Outreach**

2020

(On-line Special Event)

23 representatives from countries, region and organisations

2800 registrations/+10,000 views

GENDA PROGRESS REPORT

Green Growth Strategy Through Achieving Carbon Neutrality

Goals

- Cost (\$/kg): \$3/kg by 2030 & less than \$2/kg by 2050
- Hydrogen demand: up to 3 Mts by 2030 & around 20 Mts by 2050

Hydrogen utilization

- FC Truck development and demonstration
- **Hydrogen Power generation demonstration**
- **Zero-carbon Steel**
- Fuel Cells development to reduce cost and efficiency

Hydrogen Gas Turbines Zero-carbon steel

Prime Minister Suga

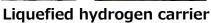
SOFC

Production

- Scale up electrolysers & R&D to reduce cost (PEM & AEM)
- Innovative R&D to further reduce cost of hydrogen

Transportation

Commercialise international hydrogen supply chain


Cross- cutting

- Create regional models through demonstration projects
- **International collaborations**

Power to Gas

MCH carrier